首页> 外文OA文献 >Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
【2h】

Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations

机译:基于深度学习的高维抛物线方法   偏微分方程和倒向随机微分方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a new algorithm for solving parabolic partial differentialequations (PDEs) and backward stochastic differential equations (BSDEs) in highdimension, by making an analogy between the BSDE and reinforcement learningwith the gradient of the solution playing the role of the policy function, andthe loss function given by the error between the prescribed terminal conditionand the solution of the BSDE. The policy function is then approximated by aneural network, as is done in deep reinforcement learning. Numerical resultsusing TensorFlow illustrate the efficiency and accuracy of the proposedalgorithms for several 100-dimensional nonlinear PDEs from physics and financesuch as the Allen-Cahn equation, the Hamilton-Jacobi-Bellman equation, and anonlinear pricing model for financial derivatives.
机译:通过在抛物线偏微分方程(PDE)和逆向随机微分方程(BSDE)之间进行类比,提出一种新的算法来求解高维抛物线偏微分方程(PDE)和逆向随机微分方程(BSDE)。由规定的终端条件和BSDE的解之间的误差给出。然后,通过神经网络对策略函数进行近似,就像在深度强化学习中所做的那样。使用TensorFlow的数值结果说明了针对物理和金融领域的多个100维非线性PDE提出的算法的效率和准确性,例如Allen-Cahn方程,Hamilton-Jacobi-Bellman方程以及金融衍生工具的非线性定价模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号